Search results for "Differential operator"

showing 10 items of 70 documents

Supersymmetric structures for second order differential operators

2012

Necessary and sufficient conditions are obtained for a real semiclassical partial differential operator of order two to possess a supersymmetric structure. For the operator coming from a chain of oscillators, coupled to two heat baths, we show the non-existence of a smooth supersymmetric structure, for a suitable interaction potential, provided that the temperatures of the baths are different.

Algebra and Number Theory35P15 47A75 47B44 81Q20 81Q60 82C22 82C31Applied MathematicsFOS: Physical sciencesMathematical Physics (math-ph)Differential operatorTunnelling effectTheoretical physicsMathematics - Analysis of PDEsOrder (business)FOS: MathematicsMathematical PhysicsAnalysisMathematicsAnalysis of PDEs (math.AP)
researchProduct

A? * algebra of pseudodifferential operators on noncompact manifolds

1988

On montre qu'une classe d'operateurs pseudodifferentiels d'ordre zero a la propriete d'invariance spectrale

AlgebraMathematics::General MathematicsPseudodifferential operatorsGeneral MathematicsMathematics::History and OverviewAlgebra over a fieldMathematicsArchiv der Mathematik
researchProduct

Spectral invariance for algebras of pseudodifferential operators on besov-triebel-lizorkin spaces

1993

The algebra of pseudodifferential operators with symbols inS1,δ0, δ<1, is shown to be a spectrally invariant subalgebra of ℒ(bp,qs) and ℒ(Fp,qs).

AlgebraNumber theoryPseudodifferential operatorsGeneral MathematicsSubalgebraAlgebraic geometryInvariant (physics)Algebra over a fieldMathematicsManuscripta Mathematica
researchProduct

Invariance spectrale des algèbres d'opérateurs pseudodifférentiels

2002

We construct and study several algebras of pseudodifferential operators that are closed under holomorphic functional calculus. This leads to a better understanding of the structure of inverses of elliptic pseudodifferential operators on certain non-compact manifolds. It also leads to decay properties for the solutions of these operators. To cite this article: R. Lauter et al., C. R. Acad. Sci. Paris, Ser. I 334 (2002) 1095–1099.

AlgebraOperator algebraBanach algebraFredholm operatorHolomorphic functional calculusHolomorphic functionGeneral MedicineOperator theoryFréchet algebraDifferential operatorMathematicsComptes Rendus Mathematique
researchProduct

Spectral Invariance and Submultiplicativity for the Algebras of S(M, g)-pseudo-differential Operators on Manifolds

2003

For appropriate triples (M, g, M), where M is an (in general non-compact) manifold, g is a metric on T*M, and M is a weight function on T* M, we developed in [5] a pseudo-differential calculus on.A.4 which is based on the S(M, g)-calculus of L. Hormander [30] in local models. Here we prove that the algebra of operators of order zero is a submultiplicative Ψ*-algebra in the sense of B. Gramsch [21] in \( \mathcal{L}\left( {{L^2}\left( M \right)} \right)\). For the basic calculus we generalized the concept of E. Schrohe [40] of so-called SG-compatible manifolds. In the proof of the existence of “order reducing operators” we apply a method from [4], and the proof of spectral invariance and sub…

AlgebraPure mathematicsWeight functionMetric (mathematics)Order (ring theory)Order zeroAlgebra over a fieldDifferential operatorManifoldMathematics
researchProduct

Nonlinear nonhomogeneous Neumann eigenvalue problems

2015

We consider a nonlinear parametric Neumann problem driven by a nonhomogeneous differential operator with a reaction which is $(p-1)$-superlinear near $\pm\infty$ and exhibits concave terms near zero. We show that for all small values of the parameter, the problem has at least five solutions, four of constant sign and the fifth nodal. We also show the existence of extremal constant sign solutions.

Applied MathematicsConcave termnodal solutionMathematical analysisZero (complex analysis)superlinear reactionDifferential operatorExtremal constant sign solutionNonlinear systemMaximum principlemaximum principleNeumann boundary conditionextremal constant sign solutionsQA1-939superlinear reaction concave terms maximum principle extremal constant sign solutions nodal solution critical groupsconcave termsConstant (mathematics)critical groupsEigenvalues and eigenvectorsCritical groupMathematicsMathematicsSign (mathematics)Electronic Journal of Qualitative Theory of Differential Equations
researchProduct

Positive solutions for singular double phase problems

2021

Abstract We study the existence of positive solutions for a class of double phase Dirichlet equations which have the combined effects of a singular term and of a parametric superlinear term. The differential operator of the equation is the sum of a p-Laplacian and of a weighted q-Laplacian ( q p ) with discontinuous weight. Using the Nehari method, we show that for all small values of the parameter λ > 0 , the equation has at least two positive solutions.

Class (set theory)Double phase problemNehari manifold01 natural sciencesDirichlet distributionsymbols.namesakeMathematics - Analysis of PDEsSettore MAT/05 - Analisi MatematicaFOS: MathematicsApplied mathematics0101 mathematics35J60 35D05Positive solutionsParametric statisticsMathematicsApplied Mathematics010102 general mathematicsSingular termSingular termMathematics::Spectral TheoryDifferential operatorTerm (time)010101 applied mathematicsDouble phaseDiscontinuous weightsymbolsAnalysisAnalysis of PDEs (math.AP)
researchProduct

Integrability of the one dimensional Schrödinger equation

2018

We present a definition of integrability for the one dimensional Schroedinger equation, which encompasses all known integrable systems, i.e. systems for which the spectrum can be explicitly computed. For this, we introduce the class of rigid functions, built as Liouvillian functions, but containing all solutions of rigid differential operators in the sense of Katz, and a notion of natural boundary conditions. We then make a complete classification of rational integrable potentials. Many new integrable cases are found, some of them physically interesting.

Class (set theory)Integrable systemFOS: Physical sciencesComplex analysisAlgebras01 natural sciencesSchrödinger equationsymbols.namesake[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]0103 physical sciencesBoundary value problem0101 mathematics010306 general physicsGauge field theoryMathematical PhysicsMathematical physicsMathematicsMSC: 34M46 34M50 37J30Liouville equation010102 general mathematicsSpectrum (functional analysis)Operator theory[ MATH.MATH-MP ] Mathematics [math]/Mathematical Physics [math-ph]Statistical and Nonlinear PhysicsMathematical Physics (math-ph)Differential operatorHamiltonian mechanicssymbols34M46 34M50 37J30
researchProduct

Nonlinear Nonhomogeneous Robin Problems with Almost Critical and Partially Concave Reaction

2020

We consider a nonlinear Robin problem driven by a nonhomogeneous differential operator, with reaction which exhibits the competition of two Caratheodory terms. One is parametric, $$(p-1)$$-sublinear with a partially concave nonlinearity near zero. The other is $$(p-1)$$-superlinear and has almost critical growth. Exploiting the special geometry of the problem, we prove a bifurcation-type result, describing the changes in the set of positive solutions as the parameter $$\lambda >0$$ varies.

Competition phenomenacompetition phenomenanonlinear maximum principleAlmost critical growthLambda01 natural sciencesSet (abstract data type)symbols.namesakeMathematics - Analysis of PDEsSettore MAT/05 - Analisi Matematica0103 physical sciencesFOS: Mathematics0101 mathematicsbifurcation-type resultMathematicsParametric statisticsNonlinear regularity35J20 35J60010102 general mathematicsMathematical analysisZero (complex analysis)udc:517.956.2Differential operatorBifurcation-type resultalmost critical growthNonlinear systemDifferential geometryFourier analysissymbolsnonlinear regularity010307 mathematical physicsGeometry and TopologyNonlinear maximum principleStrong comparison principlestrong comparison principleAnalysis of PDEs (math.AP)
researchProduct

On the Fučík spectrum of the p-Laplacian with no-flux boundary condition

2023

In this paper, we study the quasilinear elliptic problem \begin{align*} \begin{aligned} -\Delta_{p} u&amp;= a\l(u^+\r)^{p-1}-b\l(u^-\r)^{p-1} \quad &amp;&amp; \text{in } \Omega,\\ u &amp; = \text{constant} &amp;&amp;\text{on } \partial\Omega,\\ 0&amp;=\int_{\partial \Omega}\left|\nabla u\right|^{p-2}\nabla u\cdot \nu \,\diff \sigma,&amp;&amp; \end{aligned} \end{align*} where the operator is the $p$-Laplacian and the boundary condition is of type no-flux. In particular, we consider the Fu\v{c}\'{\i}k spectrum of the $p$-Laplacian with no-flux boundary condition which is defined as the set $\fucik$ of all pairs $(a,b)\in\R^2$ such that the problem above has a nontrivial solution. It turns out…

Computational MathematicsApplied MathematicsGeneral EngineeringGeneral MedicineEigenvalue problem first nontrivial curve Fucik spectrum no-flux boundary condition p-Laplace differential operatorGeneral Economics Econometrics and FinanceAnalysis
researchProduct